Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515989

RESUMO

The dynamics of living organisms are organized across many spatial scales. However, current cost-effective imaging systems can measure only a subset of these scales at once. We have created a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, we computationally generate gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This allows us to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales, including larval zebrafish, fruit flies, nematodes, carpenter ants, and slime mold. Further, the MCAM architecture allows stereoscopic tracking of the z-position of organisms using the overlapping field of view from adjacent cameras. Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms across a wide range of spatial scales.


Assuntos
Microscopia , Peixe-Zebra , Animais , Microscopia/métodos
2.
Curr Opin Neurobiol ; 65: 88-99, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33221591

RESUMO

Detailed quantification of neural dynamics across the entire brain will be the key to genuinely understanding perception and behavior. With the recent developments in microscopy and biosensor engineering, the zebrafish has made a grand entrance in neuroscience as its small size and optical transparency enable imaging access to its entire brain at cellular and even subcellular resolution. However, until recently many neurobiological insights were largely correlational or provided little mechanistic insight into the brain-wide population dynamics generated by diverse types of neurons. Now with increasingly sophisticated behavioral, imaging, and causal intervention paradigms, zebrafish are revealing how entire vertebrate brains function. Here we review recent research that fulfills promises made by the early wave of technical advances. These studies reveal new features of brain-wide neural processing and the importance of integrative investigation and computational modelling. Moreover, we outline the future tools necessary for solving broader brain-scale circuit problems.


Assuntos
Neurociências , Peixe-Zebra , Animais , Encéfalo , Neurônios
3.
Cell ; 167(4): 947-960.e20, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814522

RESUMO

Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data.


Assuntos
Encéfalo/fisiologia , Retroalimentação Sensorial , Percepção Visual , Peixe-Zebra/fisiologia , Animais , Vias Neurais , Neuroimagem , Neurônios , Natação
4.
Elife ; 5: e12741, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27003593

RESUMO

In the absence of salient sensory cues to guide behavior, animals must still execute sequences of motor actions in order to forage and explore. How such successive motor actions are coordinated to form global locomotion trajectories is unknown. We mapped the structure of larval zebrafish swim trajectories in homogeneous environments and found that trajectories were characterized by alternating sequences of repeated turns to the left and to the right. Using whole-brain light-sheet imaging, we identified activity relating to the behavior in specific neural populations that we termed the anterior rhombencephalic turning region (ARTR). ARTR perturbations biased swim direction and reduced the dependence of turn direction on turn history, indicating that the ARTR is part of a network generating the temporal correlations in turn direction. We also find suggestive evidence for ARTR mutual inhibition and ARTR projections to premotor neurons. Finally, simulations suggest the observed turn sequences may underlie efficient exploration of local environments.


Assuntos
Comportamento Animal , Mapeamento Encefálico , Locomoção , Rombencéfalo/fisiologia , Peixe-Zebra/fisiologia , Animais
5.
Neuron ; 89(3): 613-28, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26804997

RESUMO

Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. We establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior.


Assuntos
Reação de Fuga/fisiologia , Neurônios/fisiologia , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Interneurônios/fisiologia , Larva/fisiologia , Modelos Neurológicos , Células Ganglionares da Retina/fisiologia , Rombencéfalo/citologia , Rombencéfalo/fisiologia , Colículos Superiores/citologia , Peixe-Zebra/genética
6.
Nat Methods ; 12(11): 1039-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26778924

RESUMO

In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal­regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.


Assuntos
Encéfalo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Neuritos/metabolismo , Algoritmos , Animais , Automação , Comportamento Animal , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cálcio/química , Imuno-Histoquímica , Microscopia Confocal , Neurônios/metabolismo , Neurônios/fisiologia , Fosforilação , Análise de Componente Principal , Reprodutibilidade dos Testes , Software , Natação , Peixe-Zebra
7.
Nat Neurosci ; 13(4): 513-20, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20305645

RESUMO

Existing techniques for monitoring neural activity in awake, freely behaving vertebrates are invasive and difficult to target to genetically identified neurons. We used bioluminescence to non-invasively monitor the activity of genetically specified neurons in freely behaving zebrafish. Transgenic fish with the Ca(2+)-sensitive photoprotein green fluorescent protein (GFP)-Aequorin in most neurons generated large and fast bioluminescent signals that were related to neural activity, neuroluminescence, which could be recorded continuously for many days. To test the limits of this technique, we specifically targeted GFP-Aequorin to the hypocretin-positive neurons of the hypothalamus. We found that neuroluminescence generated by this group of approximately 20 neurons was associated with periods of increased locomotor activity and identified two classes of neural activity corresponding to distinct swim latencies. Our neuroluminescence assay can report, with high temporal resolution and sensitivity, the activity of small subsets of neurons during unrestrained behavior.


Assuntos
Equorina/metabolismo , Animais Geneticamente Modificados/genética , Atividade Motora/fisiologia , Rede Nervosa/química , Rede Nervosa/metabolismo , Peixe-Zebra , Equorina/fisiologia , Animais , Comportamento Animal/fisiologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/fisiologia , Atividade Motora/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Orexinas , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...